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Abstract

Piezoceramic materials exhibit different types of nonlinearities under different combinations of electric and mechan-
ical fields. When excited near resonance in the presence of weak electric fields, they exhibit typical nonlinearities similar
to a Duffing oscillator such as jump phenomena and presence of superharmonics in the response spectra. In order to
model such nonlinearities, a nonlinear electric enthalpy density function (using quadratic and cubic terms) valid for a
general 3-D piezoelectric continuum has been proposed in this work. Linear (i.e. proportional) and nonlinear damping
models have also been proposed. The coupled nonlinear finite element equations have been derived using variational
formulation. The classical linearization technique has been used to derive the linearized stiffness and damping matrices
which helps in assembling the nonlinear matrices and solution of resulting nonlinear equation. The general 3-D finite
element formulation is discussed in this paper. In a companion paper by Samal et al., numerical results on various typ-
ical examples are shown to match very well with the experimental observations.
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1. Introduction

Smart materials, especially piezoceramics find a wide range of applications viz., active vibration control,
shape control, health monitoring of structures (Crawley, 1994; Rao and Sunar, 1994). Piezoceramics have
been extensively used in recent years for actuators and sensors applications because of their high electro-
mechanical coupling coefficients. A special class of these actuators, known as ultrasonic transducers, are
driven at resonance frequency. It is well known that the mechanical and electrical responses of a piezoelec-
tric material are coupled. When the applied electric field is low and the strains are also low, the behaviour of
piezoceramics is almost linear. But, the piezoelectric materials exhibit a wide range of nonlinear effects un-
der both high and low electric fields when operated in the presence of high and low stress fields. The non-
linear behaviours under high and low electric fields are different in some aspects. For example, the
nonlinearity observed under high electric fields is typical hysteresis behaviour between electric field and
polarization, electric field and strain such as dielectric and butterfly hysteresis etc. which occurs because
of domain switching and the associated ferroelectric nonlinearities. The nonlinearities observed under weak
electric fields are jump phenomena, dependence of resonance frequency on vibration amplitude, presence of
superharmonics in the response spectra etc. The problems associated with piezoactuators showing the jump
phenomena can be excessive heat generation, mechanical break down and instability when operating in the
resonant mode etc. The different nonlinear behaviours of piezoactuators can also affect other applications
such as the active shape and vibration control of structures (Sun et al., 2004; Zhou and Tzou, 2000).

There are many models for nonlinearities under strong electric fields (i.e., hysteresis), which are mainly
based on classical Preisach model and its modified versions (Zhou and Chattopadhyay, 2001; Yu et al.,
2002). Hwang and McMeeking (1998) have used a domain wall switching theory to explain the hysteresis
in ferroelectric polycrystals and developed a finite element model based on the above theory. However,
there are very few research works existing in the literature which deal with the nonlinear effects under weak
electric fields. Beige and Schmidt (1982) first observed these nonlinear effects while conducting experiments
on longitudinal vibrations of piezorods. They developed analytical models for these nonlinearities using
higher order quadratic and cubic terms in the energy expression contributed by elastic, piezoelectric and
dielectric continuum. von Wagner and Hagedorn (2002) and von Wagner (2003) modeled nonlinear behav-
iour of the typical PZT based piezoceramics excited using d31 and d33 effects. In these papers, the softening
behaviour of the material is attributed to the nonlinear dependence of the Young�s modulus and the pie-
zoelectric coefficient on the mechanical and electrical field variables. They derived the electric enthalpy den-
sity functions for the 1-D continuum. The governing 1-D nonlinear equation was derived using variational
formulation (Hamilton�s principle) and solved using Rayleigh–Ritz method.

Benjeddou (2000) has given a detailed review of different piezoelectric finite element models that have
been developed to model adaptive structural elements. Several authors have used FEM to model various
linear piezoelectric material systems (Allik and Hughes, 1970; Allik et al., 1974; Tzou and Tseng, 1990;
Tzou and Tseng, 1991; Tsung and Charles, 1993; Simkovics et al., 1999a,b). Saravanos et al. (1997) devel-
oped a layer-wise FE model for the dynamic analysis of piezoelectric composite plates. Recently, Wang
(2004) developed a FE model for static and dynamic analysis of piezoelectric bimorphs. Wang et al.
(2004) studied the dynamic stability behaviour of FE models for piezocomposite plates.

It is observed that a generalized FE model taking into consideration the nonlinearity of piezocontinuum
under weak electric fields similar to a Duffing oscillator is lacking. A generalized 3-D finite element model
for the above nonlinearity is proposed in this work. The salient features of this work are given as below.

(a) Development of a generalized 3-D nonlinear electric enthalpy density function taking into consider-
ation of quadratic and cubic terms in the mechanical, dielectric and piezoelectric domain.

(b) Development of generalized 3-D virtual work to model nonlinear damping in the material considering
dissipative energy terms in the mechanical, dielectric and piezoelectric domain.
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(c) Linearization of the resulting nonlinear finite element equations (after application of variational
principle) to obtain the coupled equations suitable for assembling and solution using Newmark-b
method.

The experimentally observed behaviours such as jump phenomena, nonlinear softening, dependence of
resonance frequency on excitation amplitude and presence of superharmonics in the response spectra etc.
need to be captured in the model and these are the motivations of this work. The goal of capturing the non-
linearities in a model has been achieved here by inclusion of quadratic and cubic order terms in the general-
ized electric enthalpy density as well as generalized virtual work (by nonlinear damping forces). The
proposed generalized 3-D nonlinear finite element model is extremely useful for analyzing the complex piez-
oceramic structures where closed form solution cannot be readily derived. Besides, results of 3-D FE model
can also serve as a benchmark to check the accuracy of various 1-D or 2-D analytical models.
2. Constitutive equations of the piezoelectric continuum

2.1. Linear electric enthalpy density function

The electric enthalpy density function H is generally used to derive the governing equations of the cou-
pled piezoelectric continuum and for the linear piezoelectric behaviour, it is given as (IEEE standard, 1988)
H lin ¼
1

2
CE

ijklSijSkl � ekijEkSij �
1

2
eSijEiEj ð1Þ
where CE
ijkl is the fourth order elastic tensor under constant electric field, ekij is the 3rd order piezoelectric

tensor, eSij is the second order dielectric tensor, Sij is the strain tensor and Ei is the electric field vector. The
second Piola–Kirchoff stress tensor Tij and the electric displacement vector Di can be derived from H using
the expressions Tij = oH/oSij and Di = �oH/oEi respectively. It can be easily seen that the expressions for
Tij and Di are coupled with the secondary field variables Sij (strain tensor) and Ei (electric field vector)
respectively. Sij is expressed in terms of mechanical displacement vector ui as Sij = (ui,j + uj,i)/2 and Ei is
expressed in terms of / as Ei = �/,i. Keeping in mind the fact that stress and strain tensors are symmetric,
Hlin can be simplified and written in terms of second order tensors as (Maugin, 1985)
H lin ¼
1

2
CE

ijSiSj � eijEiSj �
1

2
eSijEiEj ð2Þ
2.2. Proposed nonlinear electric enthalpy density function

In order to model the nonlinearities in a coupled piezoelectric medium, the linear electric enthalpy den-
sity function is modified in the following way. It was experimentally observed (von Wagner and Hagedorn,
2002; Dave, 2002; von Wagner, 2003) that second and third order harmonics were present in the response
spectra of PZT piezoceramic plates and rod geometries. They also observed jump phenomena in both dis-
placement and current response for materials with low damping. This jump phenomenon is a characteristic
of a system with cubic stiffness in all the domains i.e., mechanical, dielectric and piezoelectric. Hence, cubic
terms were added in the generalized electric enthalpy density function for all of the above domains. As sec-
ond and third order harmonics were observed in the response spectra of PZT piezoceramic plates and rod
geometries, it was envisaged to develop a generalized nonlinear electric enthalpy density function including
both quadratic and cubic terms. Hence a generalized expression for nonlinear electric enthalpy density
function valid for a 3-D piezoelectric continuum is proposed as follows:
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Hnonl ¼
1

2
CE

ijSiSj � emiEmEi �
1

2
eSmnEmEn þ

1

3
CE

ijkSiSjSk þ
1

4
CE

ijklSiSjSkSl �
1

3
eSmnoEmEnEo

� 1

4
eSmnopEmEnEoEp �

1

2
emijEmSiSj �

1

2
e�mniEmEnSi �

1

3
e��mijkEmSiSjSk �

1

4
e���mnijEmEnSiSj

� 1

3
e����mnoiEmEnEoSi ð3Þ
where the coefficients with 3 and 4 number of subscript indices are higher order quadratic and cubic coef-
ficients respectively. The superscripts (*, ** etc.) on coefficient emnij are used to differentiate between differ-
ent nonlinear piezoelectric coefficients. In order to understand the logical extension of the nonlinear electric
enthalpy function for the 3-D case from the linear electric enthalpy function, the reader is referred to
Appendix A.1 where the derivation of Hnonl has been explained corresponding to a 1-D beam example
(von Wagner et al., 2001).

A matrix version of the above expression for Hnonl suitable for finite element formulation is given as
follows:
Hnonl ¼
1

2
fSgT½C�fSg � fEgT½d�½C�fSg � 1

2
fEgT½½eT� � ½d�½C�½d�T�fEg þ 1

3
fSgT½C1�fS2g

þ 1

4
fS2gT½C21�fS2g þ 1

4
fSgT½C22�fS3g � 1

2
fEgT½c11�fS2g � 1

2
fE2gT½c12�fSg

� 1

3
fEgT½t1�fE2g � 1

3
fEgT½c21�fS3g � 1

2
fE2gT½c22�fS2g � 1

3
fE3gT½c23�fSg

� 1

4
fEgT½t21�fE3g � 1

4
fE2gT½t22�fE2g ð4Þ
where {S} is the strain vector, [C] is linear elasticity matrix, [d] is the linear piezoelectric coefficient matrix,
{E} is the electric field vector, [eT] is the dielectric coefficient matrix, [C1] is quadratic elasticity matrix, [C21]
and [C22] are cubic elasticity matrices at constant electric field respectively. The superscript E and S (for the
matrices at constant electric field and constant strain) are omitted for clarity. [c11] and [c12] are quadratic
piezoelectric matrices, [c21], [c22] and [c23] are cubic piezoelectric matrices, [t0] = [[eT] � [d][C][d]T], [t1], [t21]
and [t22] are linear, quadratic and cubic dielectric matrices at constant strain field S respectively. The vec-
tors with superscripts 2 and 3 are defined as the vectors with square and cube of individual terms of the
vectors. For example, the vector {S2} is written as ½S2

1; S
2
2; S

2
3; S

2
4; S

2
5; S

2
6�
T. The first three terms of Hnonl cor-

respond to the linear electric enthalpy density function. Using this expression of Hnonl, the FE matrices
have been derived in the next section using variational formulation.
3. Variational formulation

The equations of motion for a piezoelectric continuum can be derived from Hamilton�s principle, in
which the Lagrangian and the virtual work are properly adapted to include the electrical, mechanical as
well as the coupled electro-mechanical terms. The potential energy density of a piezoelectric material in-
cludes contributions from the strain energy and from the electrostatic energy. Hamilton�s principle can
be written as
d
Z t1

t0

Z
V
LdV

� �
dt þ

Z t1

t0

dW dt ¼ 0 ð5Þ
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Fig. 1. Generalized mechanical and electrical forces of various types acting in the domain V.
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where t0 and t1 define the time interval, L is the Lagrangian and defined in terms of the kinetic energy den-
sity Tke and electrical enthalpy densityH as L = (Tke � H), dw is the virtual work done by external mechan-
ical and electrical forces. The kinetic energy is given as
T ke ¼
1

2
qf _ugTf _ug. ð6Þ
where q is the mass density, {u} is the generalized displacement field and f _ug is the generalized velocity field.
The extended electric enthalpy density Hnonl is given in Eq. (4). The virtual work done by the external
mechanical forces F and the applied electric charges Q for an arbitrary variation of the displacement field
{du} and the electrical potential {d/} both satisfying the essential boundary conditions (i.e., {du} = 0 on
surface As3 and {d/} = 0 on surface As4 [as shown in Fig. 1]) can be written as
dW ¼
Z
V
fdugTfF V gdV þ

Z
As1

fdugTfF AsgdAs þ fdugTfF Pg �
Z
As2

d/fdAs � d/Qþ dW D ð7Þ
where {FV} is the applied body force vector, fF Asg is the applied surface force vector (defined on the surface
As1), {FP} is the applied point load vector, / is the electric potential, f is the surface charge brought on
surface As2, Q is the applied concentrated electric charge and dWD is the virtual work done by damping
forces.

Now, substituting the nonlinear electric enthalpy density function Hnonl and kinetic energy density Tke

from Eqs. (4) and (6) in Eq. (5), we get the following expression:
�
Z t1

t0

Z
V
½qfdugTf€ug�dV dt

�
Z t1

t0

Z
V
fdSgT

½C�fSg � ½C�T½d�TfEg � ½diagðfSgÞ�½c11�
TfEg � 1

2
½c12�

TfE2g
þ½diagðfSgÞ�½C21�½diagðfSgÞ�fSg þ 1

4
½C22�fS3g þ 3

4
½diagðfS2gÞ�½C22�TfSg

þ 1
3
½C1�fS2g þ 2

3
½diagðfSgÞ�½C1�TfSg � ½diagðfS2gÞ�½c21�

TfEg
�½diagðfSgÞ�½c22�

TfE2g � 1
3
½c23�

TfE3g

2
666664

3
777775dV dt
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�
Z t1

t0

Z
V
fdEgT

½d�½C�fSg þ ½t0�fEg þ 1
2
½c11�fS2g

þ½diagðfEgÞ�½c12�fSg þ 1
3
½c13�fS2g þ 2

3
½diagðfEgÞ�½c13�

TfEg
þ 1

3
½c21�fS3g þ ½diagðfEgÞ�½c22�fS2g þ ½diagðfE2gÞ�½c23�fSg

þ 1
4
½t1�fE3g þ 3

4
½diagðfE2gÞ�½t1�TfEg þ ½diagðfEgÞ�½t2�½diagðfEgÞ�fEg

2
66664

3
77775dV dt

þ
Z t1

t0

Z
V
fdugTfF V gdV dt þ

Z t1

t0

Z
AS1

½fdugTfF Asg�dAs dt þ
Z t1

t0

fdugTfF Pgdt �
Z t1

t0

Z
As2

d/fdAs dt

�
Z t1

t0

d/Qdt �
Z t1

t0

½dW D�dt ¼ 0 ð8Þ
where the matrix with �diag� refers to a diagonal matrix with the main diagonal terms being the terms of the
vector it contains. For deriving the expression for the virtual work done by damping forces (i.e., dWD), two
types of models are considered and are given below.

3.1. Proportional damping formulation

The virtual work done by viscous damping forces is given asZ

dW D ¼

V
fdugT½Cdamp�f _ugdV ; ð9Þ
where [Cdamp] is the proportional damping coefficient matrix and is expressed in terms of mass [M] and stiff-
ness [K] matrices with the help of constants a and b as
½Cdamp� ¼ a½M � þ b½K�. ð10Þ
3.2. Nonlinear damping formulation

3.2.1. Virtual work dWD—linear case

The virtual work expression for linear damping (i.e., dissipative energy due to damping) has been for-
mulated considering work done by the linear viscous damping forces and is represented as (Ikeda, 1990;
von Wagner, 2004)
dW D ¼ d
Z
V
fSgT½Cð0Þ

d �f _SgdV ð11Þ
The above expression for dWD can be extended by incorporating other linear sources of damping, i.e. linear
piezoelectric and linear dielectric damping matrices respectively (Ikeda, 1990; von Wagner, 2004). So, dWD

can be written as
dW D ¼ d
Z
V
½fSgT½Cð0Þ

d �f _Sg � fSgT½c0d �f _Eg � f _SgT½c0d �fEg � fEgT½m0d �f _Eg�dV ð12Þ
where [c0d] and [m0d] are the linear piezoelectric and dielectric damping matrices, respectively.

3.2.2. Virtual work dWD—nonlinear case

The basic linear expression for virtual work [Eq. (12)] can now be extended to combine the linear and
nonlinear form by including quadratic and cubic damping terms in the same manner as done for the non-
linear electric enthalpy density function (von Wagner, 2004). This is done in order to obtain a generalized
formulation for damping where the damping constant would include the effect of damping in mechanical,
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piezoelectric and dielectric domains. Also, the damping constants (experimentally determined from half
power method) were observed to depend nonlinearly on the electric field (Samal, 2003). The experimental
displacement-frequency responses of many piezoelectric structures were found to be non-symmetric (Samal,
2003). The nonsymmetric nature of the frequency response curve arises mainly because of nonlinear soft-
ening of the piezoelectric continuum which causes it to behave as a softening spring-damper system. Hence,
the backbone curve of the response bends towards lower frequency. Also, the presence of cubic terms in the
stiffness and damping expressions causes the jump phenomenon. The above nonlinear phenomenon can be
captured in the model by considering higher order terms in the work done by damping forces from all
sources.

Considering the effect of quadratic and cubic terms in all the fields (i.e., mechanical, dielectric and pie-
zoelectric), the modified expression for nonlinear dW Dnonl

can be written as below:
dW Dnonl
¼ d

Z
V

fSgT½Cð0Þ
d �f _Sg�fSgT½c0d �f _Eg�f _SgT½c0d �fEg�fEgT½m0d �f _Egþ 1

3
fSgT½Cð1Þ

d �fð _S2Þg

þ 1
3
f _SgT½Cð1Þ

d �f _S2g� 1
2
fS2gT½cð1Þ1d �f _Eg� 1

2
fð _S2ÞgT½cð1Þ1d �fEg� 1

2
fSgT½cð2Þ1d �fð _E

2Þg

� 1
2
f _SgT½cð2Þ1d �fE2gþ 1

4
fSgT½Cð2Þ

d1 �fð _S
3Þgþ 1

4
f _SgT½Cð2Þ

d1 �fS3gþ 1
2
fS2gT½Cð2Þ

d2 �fð _S
2Þg

� 1
3
fS3gT½cð1Þ2d �f _Eg� 1

3
fð _S3ÞgT½cð1Þ2d �fEg� 1

2
fS2gT½cð2Þ2d �fð _E

2Þg� 1
2
fð _S2ÞgT½cð2Þ2d �fE2g

� 1
3
fSgT½cð3Þ2d �fð _E

3Þg� 1
3
f _SgT½cð3Þ2d �fE3g� 1

3
fE2gT½m1d �f _Eg� 1

3
fð _E2ÞgT½m1d �fEg

� 1
4
fE3gT½m2d1�f _Eg� 1

4
fð _E3ÞgT½m2d1�fEg� 1

4
fð _E2ÞgT½m2d2�fE2g� 1

4
fE2gT½m2d2�fð _E

2Þg

2
66666666666666664

3
77777777777777775

dV

ð13Þ

where ½Cð1Þ

d � is the quadratic elastic damping matrix, ½cð1Þ1d �; ½cð2Þ1d �, are quadratic piezoelectric damping matri-

ces, [m1d] is the quadratic dielectric damping matrix, ½Cð2Þ
d1 �; ½Cð2Þ

d2 � are cubic elastic damping matrices respec-

tively. ½cð1Þ2d �; ½cð2Þ2d � and ½cð3Þ2d � are cubic piezoelectric damping matrices and ,are cubic dielectric damping
matrices respectively. These matrices are also called dissipative constant matrices in the matrix equation
of motion. It may also be noted here that the product of vectors inside a vector notation } implies that
it is a resulting vector whose terms are products of the corresponding terms of two or more vectors. For
example, fS _Sg ¼ fS1

_S1; S2
_S2; S3

_S3; S4
_S4; S5

_S5; S6
_S6g where {S} is a strain tensor.

The variation of WD (i.e., dWD) is given in Appendix A.2 which is used for deriving the FE equations of
motion.
4. Derivation of nonlinear FE equations

The displacement field {u} and the electric potential / at any point in a finite element are related to the
corresponding nodal values {ui} and {/i} by means of the element shape function matrices [Nu] and [N/] as
fug ¼ ½Nu�fuig and / ¼ ½N/�f/ig ð14Þ

The strain field vector and the electric field vector {E} can be expressed in terms of {ui} and {/} as
fSg ¼ ½Bu�fuig and fEg ¼ ½B/�f/ig ð15Þ

where [BU] and [B/] are derivatives of shape function matrices. Using these Eqs. (14) and (15) for the pri-
mary and secondary field variables, the FE equations are derived below here for different damping formu-
lations (i.e., viscous proportional damping and nonlinear damping).
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4.1. Derivation of finite element equations for the proportional damping formulation

Putting the expressions of {S} and {E} in the variational Eq. (8) with the expression of variation of vir-
tual work for the proportional damping formulation dWD from Eq. (9), collecting the terms with {dui}

T

and {d/i}
T and equating them to zero separately, we get the nonlinear finite element equations (for the cur-

rent time step (t + 1)) as
M 0

0 0

� �ðtþ1Þ €ui
€/i

� �ðtþ1Þ

þ
Kuu Ku/

K/u K//

� �ðtþ1Þ

linear

ui
/i

� �ðtþ1Þ

þ
fm i

fe i

� �ðtþ1Þ

nonl

¼
fi
gi

� �ðtþ1Þ
ð16Þ
This equation cannot be solved as it contains nonlinear mechanical and electrical force vectors (i.e., {fm_i}-

nonl and {fe_i}nonl) which depend upon the solution vectors {ui}
(t+1) and {/i}

(t+1). This equation has been
linearized following a classical linearization technique (Salinas et al., 1993). The coupled linearized FE
equations are obtained as
½M �ðtþ1Þf€uigðtþ1Þ þ ½Cdamp�ðtÞf _uigðtþ1Þ þ ½Kuu�ðtÞfuigðtþ1Þ þ ½Ku/�ðtÞf/ig
ðtþ1Þ ¼ ffigðtþ1Þ ð17Þ

½K/u�ðtÞfuigðtþ1Þ þ ½K//�ðtÞf/ig
ðtþ1Þ ¼ fgig

ðtþ1Þ ð18Þ
where [M] is the mass matrix, [Kuv] is the nonlinear mechanical stiffness matrix, [Ku/] and [K/u] are nonlin-
ear piezoelectric stiffness matrices, [K//] is the nonlinear dielectric stiffness matrix, [fi] is the external
mechanical force vector, [gi] is the external electrical force vector due to applied charge density respectively.
It may be noted that superscript (t) appears in these matrices to denote that the field variables used in the
expressions correspond to those of previous time step (t). The superscript (t + 1) is for the current time step.
The expressions for these matrices are given in Appendix A.3. It may be noted that the nonlinear stiffness
and damping matrices depend implicitly upon the solution, i.e., {ui} and {/i} through the vectors {S} and
{E}. In order to derive and assemble the element stiffness and damping matrices, the classical linearization
technique (Salinas et al., 1993) has been adapted here. This classical linearization technique of Salinas et al.
(1993) for scalar nonlinear equations has been extended to the nonlinear vector expressions.
4.2. Derivation of finite element equations for nonlinear damping formulation

Similar to the case of proportional damping formulation, when the expressions {S} for {E} are substi-
tuted in the variational Eq. (8) and the expression of virtual work for nonlinear damping formulation WD

from Eq. (13) was used, the coupled FE equations with nonlinear terms appearing as force vectors are ob-
tained and are same as that of Eq. (16) except for the expressions of the nonlinear mechanical and electrical

force vectors (i.e., ffm igðtþ1Þ
nonl and ffe igðtþ1Þ

nonl ). These force vectors at the current time step (t + 1) are then

splitted into nonlinear stiffness as well as damping matrices after following a classical linearization tech-
nique (Salinas et al., 1993). The linearization technique followed in this work is an extension of the classical
linearization technique (Salinas et al. (1993) for nonlinear scalar equations) to vector expressions. The de-
tails of the procedure are described in Appendix A.4 and the expression for the nonlinear matrices for this
case are given in Appendix A.5. The coupled nonlinear FE equation that is obtained from this method is
expressed as
½M �ðtþ1Þf€uigðtþ1Þ þ ½Cmdamp�ðtÞf _uigðtþ1Þ þ ½Cpdamp�ðtÞf _/ig
ðtþ1Þ þ ½Kuu�ðtÞfuigðtþ1Þ þ ½Ku/�ðtÞf/ig

ðtþ1Þ

þ ½Kuud �ðtÞfuigðtþ1Þ þ ½Ku/d �ðtÞf/ig
ðtþ1Þ ¼ ffigðtþ1Þ ð19Þ

½epdamp�ðtÞf _uigðtþ1Þ þ ½eddamp�ðtÞf _/ig
ðtþ1Þ þ ½K/u�ðtÞfuigðtþ1Þ þ ½K//�ðtÞf/ig

ðtþ1Þ

þ ½K/ud �ðtÞfuigðtþ1Þ þ ½K//d �ðtÞf/ig
ðtþ1Þ ¼ fgig

ðtþ1Þ ð20Þ
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where [Cmdamp] is the nonlinear mechanical damping matrix, [Cpdamp], [epdamp] are the nonlinear piezoelec-
tric damping matrices [eddamp], is the nonlinear dielectric damping matrix [Kuud], is the additional nonlinear
mechanical stiffness matrix [Ku/d], [K/ud], are the additional nonlinear piezoelectric stiffness matrices and
[K//d] is the additional nonlinear dielectric stiffness matrix respectively due to the nonlinear damping for-
mulation. The superscripts (t) and (t + 1) correspond to previous and current time steps respectively. The
final coupled FE equations that can be assembled and solved by the Newmark-b (Bathe, 1995) method with
iteration are
M 0

0 0

� �ðtþ1Þ €ui
€/i

� �ðtþ1Þ

þ
Cmdamp Cpdamp

epdamp eddamp

� �ðtÞ
_ui
_/i

� �ðtþ1Þ

þ
Kuu þ Kuud Ku/ þ Ku/d

K/u þ K/ud K// þ K//d

� �ðtÞ ui
/i

� �ðtþ1Þ

¼
fi
gi

� �ðtþ1Þ

ð21Þ
5. Conclusion

Piezoceramic continua exhibit different types of nonlinearities under weak electric fields (when the sys-
tem is operating near resonance frequency) such as jump phenomena, dependence of resonance frequency
on vibration amplitude etc. In this work, a generalized nonlinear electric enthalpy density function as well
the virtual work due to damping incorporating higher order nonlinear terms (quadratic and cubic) in the
conservative as well as in the dissipative energy expression of the coupled piezoelectric medium have been
formulated. This nonlinear electric enthalpy density function as well as the virtual work due to nonlinear
damping has been used to derive the coupled FE equations through variational formulation. The element
level equations have been assembled using linearization technique and the global equations obtained are
suitable for solution using Newmark-method with iteration. In a companion paper (Samal et al., 2005),
numerical results on various typical examples (using different geometries as well as materials) are shown
to match very well with the experimental observations.
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Appendix A

A.1. Derivation of nonlinear electric enthalpy density function for 1-D piezoelectric beam

The linear constitutive equations for the d31 effect are given as (von Wagner et al., 2001):
T xx ¼ EcSxx � d31EcEz

Dz ¼ d31EcSxx þ ðeT33 � d2
31EcÞEz
where Txx and Sxx are the stress and strain respectively in x direction (length of beam). Ec is the elastic
modulus of the piezoceramic orthogonal to polarization direction and Ez is the applied electric field in



M.K. Samal et al. / International Journal of Solids and Structures 43 (2006) 1422–1436 1431
the z-direction. The parameters d31 and eT33 correspond to the 31-piezoelectric effect and dielectric constant
at constant stress respectively. To include higher order terms of strain dependence, the elastic modulus and
d31 parameter can be represented as
Ec ¼ Eð0Þ
c þ Eð1Þ

c Sxx þ Eð2Þ
c S2

xx

d31 ¼ dð0Þ
31 þ dð1Þ

31 Sxx þ dð2Þ
31 S

2
xx
Assuming a linear relationship between Dz and Ez and retaining terms only upto the third order, the non-
linear constitutive equation for Txx and Dz can be written as
T xx ¼ Eð0Þ
c Sxx þ Eð1Þ

c S2
xx þ Eð2Þ

c S3
xx � c0Ez � c1SxxEz � c2S

2
xxEz

Dz ¼ c0Sxx þ
1

2
c1S

2
xx þ

1

3
c2S

3
xx þ m0Ez
where
m0 ¼ eT33 � ðdð0Þ
33 Þ

2Eð0Þ
c

c0 ¼ Eð0Þ
c dð0Þ

31

c1 ¼ Eð0Þ
c dð1Þ

31 þ Eð1Þ
c dð0Þ

31

c2 ¼ Eð0Þ
c dð2Þ

31 þ Eð2Þ
c dð0Þ

31 þ Eð1Þ
c dð1Þ

31
One must satisfy the compatibility equations, i.e.,
T xx ¼
oH
oSxx

and Dz ¼ � oH
oEz
Considering the above expressions, the expression for the nonlinear electric enthalpy function can be de-
rived as
H ¼ Hnonl ¼
1

2
Eð0Þ
c S2

xx þ
1

3
Eð1Þ
c S3

xx þ
1

4
Eð2Þ
c S4

xx � c0SxxEz �
1

2
c1S

2
xxEz �

1

3
c2S

3
xxEz �

1

2
m0E2

z

This expression for the nonlinear electric enthalpy function also satisfies the necessity and sufficient condi-
tion for the existence of the electric enthalpy function, i.e.,
o
2H

oSxxoEz
¼ oT xx

oEz
¼ � oDz

oSxx
¼ o

2H
oEzoSxx
The nonlinear electric enthalpy density function has been extended to 3-D piezoelectric continua in the
present work.

A.2. Variational form of virtual work for nonlinear damping

ð0Þ ð1Þ ð1Þ2 3
dW D ¼
Z
V
fdSgT

½Cd �f _Sg � ½c0d �f _Eg � 2
3
½Cd �fS _Sg þ 2

3
½diagðf _SgÞ�½Cd �fSg

þ 2
3
½diagðfSgÞ�½Cð1Þ

d �f _Sg � ½diagðfSgÞ�½cð1Þ1d �f _Eg � ½diagðf _SgÞ�½cð1Þ1d �fEg
�½cð2Þ1d �fE _Eg þ 3

4
½Cð2Þ

d1 �fS2 _Sg þ 3
2
½diagðfS _SgÞ�½Cð2Þ

d1 �
TfSg

þ 3
4
½diagðfS2gÞ�½Cð2Þ

d1 �
Tf _Sg þ 2½diagðfSgÞ�½Cð2Þ

d2 �
TfS _Sg þ ½diagð _SÞ�½Cð2Þ

d2 �
TfS2g

�½diagðfS2gÞ�½cð1Þ2d �f _Eg � 2½diagðfS _SgÞ�½cð1Þ2d �fEg � 2½diagðfSgÞ�½cð2Þ2d �fE _Eg
�½diagðf _SgÞ�½cð2Þ2d �fE2g � ½cð3Þ2d �fE2 _Eg

66666666664

77777777775
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þ fdEgT

½c0d �
Tf _Sg þ 1

2
½cð1Þ1d �

Tf _S2g þ ½diagðf _EgÞ�½cð2Þ1d �
TfSg

þ½diagðfEgÞ�½cð2Þ1d �
Tf _Sg þ 1

3
½cð1Þ2d �

Tf _S3g þ ½diagðf _EgÞ�½cð2Þ2d �
TfS2g

þ½diagðfEgÞ�½cð2Þ2d �
Tf _S2g þ ½diagðf _E2gÞ�½cð3Þ2d �

TfSg þ ½diagðfE2gÞ�½cð3Þ2d �
Tf _Sg

þ½m0d �f _Eg þ 2
3
½diagðfEgÞ�½m1d �f _Eg þ 2

3
½diagðf _EgÞ�½m1d �fEg

þ 1
3
½m1d �Tf _E2g þ 3

4
½diagðfE2gÞ�½m2d1�f _Eg þ 3

4
½diagðf _E2gÞ�½m2d1�fEg

þ 1
4
½m2d1�Tf _E3g þ ½diagðf _EgÞ�½m2d2�fE2g þ ½diagðfEgÞ�½m2d2�Tf _E

2g

2
666666666664

3
777777777775
dV
where the notation [diag{ }] represents a diagonal matrix with the terms of the diagonal being equal to the
corresponding terms of a vector that it is enclosing.

A.3. Finite element matrices of the nonlinear piezoelectric continuum for proportional damping formulation

corresponding to Eqs. (17) and (18)Z

½M � ¼

V
½Nu�Tq½Nu�dV

½Kuu� ¼
Z
V

½Bu�T½C�½Bu� þ ½Bu�T½diagðfSgÞ�½C21�½diagðfSgÞ�½Bu�
þ 1

4
½Bu�T½diagðfSgÞ�½C22�½diagðfS2gÞ�½Bu� þ 3

4
½Bu�T½diagðfS2gÞ�½C22�T½Bu�

þ 1
3
½Bu�T½C1�½diagðfSgÞ�½Bu� þ 2

3
½Bu�T½diagðfSgÞ�½C1�T½Bu�

2
664

3
775dV

½Ku/� ¼
Z
V

½Bu�T½C�T½d�T½B/� þ ½Bu�T½diagðfSgÞ�½c11�
T½B/�

þ 1
2
½Bu�T½c12�

T½diagðfEgÞ�½B/� þ ½Bu�T½diagðfS2gÞ�½c21�
T½B/�

þ½Bu�T½diagðfSgÞ�½c22�
T½diagðfEgÞ�½B/� þ 1

3
½Bu�T½c23�

T½diagðfE2gÞ�½B/�

2
664

3
775dV

½K/u� ¼ ½Ku/�T

½K//� ¼ �
Z
V

½B/�T½m0�½B/� þ 1
3
½B/�T½m1�½diagðfEgÞ�½B/� þ 2

3
½B/�T½diagðfEgÞ�½m1�T½B/�

þ 1
4
½B/�T½m21�½diagðfE2gÞ�½B/� þ 3

4
½B/�T½diagðfE2gÞ�½m21�T½B/�

þ½B/�T½diagðfEgÞ�½m22�½diagðfEgÞ�½B/�

2
664

3
775dV

½Cdamp� ¼ a½M � þ b
Z
V
½Bu�T½C�½Bu�

ff gi ¼
Z
V
½Nu�TfF V gdV þ

Z
AS1

½Nu�TF AS dAS þ ½Nu�TfF Pg

fgig ¼ �
Z
AS2

½N/�T1dAs � ½N/�TQ
A.4. Linearization of nonlinear FE equations

The generalized nonlinear mechanical and electrical force vectors ffm igðtþ1Þ
nonl and ffe igðtþ1Þ

nonl that are pre-
sented in the Section 4.2 are for the FE formulation with nonlinear damping. However, these vectors can
also be derived for the case of proportional damping formulation. In order to present the methodology of
classical linearization (Salinas et al., 1993), only the details of the nonlinear damping case are presented
here. These vectors have been derived from the variational Eq. (8) using the virtual work dWD [Appendix
A.2] and are written as
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ðfm iÞðtþ1Þ
nonl ¼ 2

3
½Bu�T½diagðf _SgÞ�½cð1Þd �T½Bu�fU ðtþ1Þg þ 3

2
½Bu�T½diagðfS _SgÞ�½cð2Þd1 �

T½Bu�fU ðtþ1Þg

þ ½Bu�T½diagðf _SgÞ�½cð2Þd2 �
T½diagðfSgÞ�½Bu�fU ðtþ1Þg þ ½Bu�T½cð0Þd �T½Bu�f _U

ðtþ1Þg

þ 2

3
½Bu�T½cð1Þd �½diagðfSgÞ�½Bu�f _U

ðtþ1Þg þ 2

3
½Bu�T½diagðfSgÞ�½cð1Þd �T½Bu�f _U

ðtþ1Þg

þ 3

4
½Bu�T½cð2Þd1 �½diagðfS2gÞ�½Bu�f _U

ðtþ1Þg þ 3

4
½Bu�T½diagðfS2gÞ�½cð2Þd1 �

T½Bu�f _U
ðtþ1Þg

þ 2½Bu�T½diagðfSgÞ�½cð2Þd2 �
T½diagðfSgÞ�½Bu�f _U

ðtþ1Þg
þ ½Bu�T½diagðf _SgÞ�½cð1Þ1d �½B/�fUðtþ1Þg þ 2½Bu�T½diagðfS _SgÞ�½cð1Þ2d �½B/�fUðtþ1Þg

þ 2½Bu�T½diagðf _SgÞ�½cð2Þ2d �½diagðfEgÞ�½B/�fUðtþ1Þg þ ½Bu�T½c0d �½B/�f _U
ðtþ1Þg

þ ½Bu�T½diagðfSgÞ�½cð1Þ1d �½B/�f _U
ðtþ1Þg þ ½Bu�T½cð2Þ1d �½diagðfEgÞ�½B/�f _U

ðtþ1Þg

þ ½Bu�T½diagðfS2gÞ�½cð1Þ2d �½B/�f _U
ðtþ1Þg þ 2½Bu�T½diagðfSgÞ�½cð2Þ2d �½diagðfEgÞ�½B/�f _U

ðtþ1Þg

þ ½Bu�T½cð3Þ2d �½diagðfE2gÞ�½B/�f _U
ðtþ1Þg

ðfe iÞðtþ1Þ
nonl ¼ ½B/�T½diagðf _EgÞ�½cð2Þ1d �

T½Bu�fU ðtþ1Þg
þ ½B/�T½diagðf _EgÞ�½cð2Þ2d �

T½diagðfSgÞ�½Bu�fU ðtþ1Þg

þ ½B/�T½diagðf _E
2gÞ�½cð3Þ2d �

T½Bu�fU ðtþ1Þg þ ½B/�T½c0d �
T½Bu�f _U

ðtþ1Þg

þ ½B/�T½cð1Þ1d �
T½diagðfSgÞ�½Bu�f _U

ðtþ1Þg þ ½B/�T½diagðfEgÞ�½cð2Þ1d �
T½Bu�f _U

ðtþ1Þg

þ 1

3
½B/�T½cð1Þ2d �

T½diagðfS2gÞ�½Bu�f _U
ðtþ1Þg

þ 2½B/�T½diagðfEgÞ�½cð2Þ2d �
T½diagðfSgÞ�½Bu�f _U

ðtþ1Þg

þ ½B/�T½diagðfE2gÞ�½cð3Þ2d �
T½Bu�f _U

ðtþ1Þg þ 2

3
½B/�T½diagðf _EgÞ�½m1d �½B/�fUðtþ1Þg

þ 3

4
½B/�T½diagðf _E

2gÞ�½m2d1�½B/�fUðtþ1Þg

þ 1

2
½B/�T½diagðf _EgÞ�½m2d2�½diagðfEgÞ�½B/�fUðtþ1Þg

þ 1

2
½B/�T½diagðf _EgÞ�½m2d2�T½diagðfEgÞ�½B/�fUðtþ1Þg

þ ½B/�T½m0d �½B/�f _U
ðtþ1Þg þ 2

3
½B/�T½diagðfEgÞ�½m1d �½B/�f _U

ðtþ1Þg

þ 2

3
½B/�T½m1d �T½diagðfEgÞ�½B/�f _U

ðtþ1Þg þ 3

4
½B/�T½diagðfE2gÞ�½m2d1�½B/�f _U

ðtþ1Þg

þ 3

4
½B/�T½m2d1�T½diagðfE2gÞ�½B/�f _U

ðtþ1Þg

þ 2½B/�T½diagðfEgÞ�½m2d2�T½diagðfEgÞ�½B/�f _U
ðtþ1Þg
Using the method of classical linearization, one can separate the accompanying displacement and potential
vectors {ui}

(t+1), {/i}
(t+1) and their derivatives f _uigðtþ1Þ

; f _/ig
ðtþ1Þ from the expanded forms of the vectors

(i.e., nonlinear force vectors are products of stiffness and damping matrices and field variable vectors)
and treat the accompanying matrices as those with values at the (t)th time step. The terms of
ffm igðtþ1Þ

nonl and ffe igðtþ1Þ
nonl which contain {ui} , {/i} explicitly on their RHS are used to form the nonlinear
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stiffness matrices whereas the terms, which contain the derivatives f _uig; f _/ig explicitly on their RHS are
used to form the nonlinear damping matrices. If some of the terms do not contain {ui}, {/i}, f _uig or
f _/ig explicitly on the RHS, it is treated as a force vector in the FE equation of motion. Thus,
ffm igðtþ1Þ
nonl ¼ ½Kuud �tfuigðtþ1Þ þ ½Ku/d �tf/ig

ðtþ1Þ þ ½Cmdamp�tf _uiggðtþ1Þ þ ½Cpdamp�tf _/ig
ðtþ1Þ

ffe igðtþ1Þ
nonl ¼ ½K/ud �tfuigðtþ1Þ þ ½K//d �tf/ig

ðtþ1Þ þ ½epdamp�tf _uigðtþ1Þ þ ½Cddamp�tf _/ig
ðtþ1Þ
Hence, the element level nonlinear matrices can be assembled with their initial guess values at (t)th time step
to form the global matrices and then the system of equations can be solved to get an initial estimate of the
solution of the field variables and their derivatives. With these new values, the nonlinear matrices can be
updated and again the system of equations solved. This process is continued iteratively till we get a conver-
gence in the solution of the field variables. The corresponding matrices that are presented here are shown in
Appendix A.5.

A.5. Finite element matrices of the nonlinear piezoelectric continuum for nonlinear damping formulation
corresponding to Eqs. (19) and (20)

T ð0Þ T ð1Þ2 3

½Cmdamp� ¼

Z
V

½Bu� ½Cd �½Bu� þ 2
3
½Bu� ½Cd �½diagðfSgÞ�½Bu�

þ 2
3
½Bu�T½diagðfSgÞ�½Cð1Þ

d �T½Bu� þ 3
4
½Bu�T½Cð2Þ

d1 �
T½diagðfS2gÞ�½Bu�

þ 3
4
½Bu�T½diagðfS2gÞ�½Cð2Þ

d1 �
T½Bu�

þ2½Bu�T½diagðfSgÞ�½Cð2Þ
d2 �

T½diagðfSgÞ�½Bu�

666664
777775dV

½Cpdamp� ¼
Z
V

½Bu�T½c0d �½B/� þ ½Bu�T½diagðfSgÞ�½cð1Þ1d �½B/�
þ½Bu�T½cð2Þ1d �½diagðfEgÞ�½B/� þ ½Bu�T½diagðfS2gÞ�½cð1Þ2d �½B/�
þ2½Bu�T½diagðfSgÞ�½cð2Þ2d �½diagðfEgÞ�½B/�
þ½Bu�T½cð3Þ2d �½diagðfE2gÞ�½B/�

2
666664

3
777775dV

½epdamp� ¼
Z
V

½B/�T½c0d �
T½Bu� þ ½B/�T½cð1Þ1d �

T½diagðfSgÞ�½Bu�
þ½B/�T½diagðfEgÞ�½cð2Þ1d �

T½Bu� þ 1
3
½B/�T½cð1Þ2d �

T½diagðfS2gÞ�½Bu�
þ2½B/�T½diagðfEgÞ�½cð2Þ2d �

T½diagðfSgÞ�½Bu�
þ½B/�T½diagðfE2gÞ�½cð3Þ2d �

T½Bu�

2
666664

3
777775dV

½eddamp� ¼
Z
V

½B/�T½t0d �½B/� þ 2
3
½B/�T½diagðfEgÞ�½t1d �½B/�

þ 2
3
½B/�T½t1d �T½diagðfEgÞ�½B/� þ 3

4
½B/�T½diagðfE2gÞ�½t2d1�½B/�

þ 3
4
½B/�T½t2d1�T½diagðfE2gÞ�½B/�

þ2½B/�T½diagðfEgÞ�½t2d2�T½diagðfEgÞ�½B/�

2
666664

3
777775dV

½Kuud � ¼
Z
V

2
3
½Bu�T½diagðf _SgÞ�½Cð1Þ

d �T½Bu� þ 3
2
½Bu�T½diagðfS _SgÞ�½Cð2Þ

d1 �
T½Bu�

þ½Bu�T½diagðf _SgÞ�½Cð2Þ
d2 �

T½diagðfSgÞ�½Bu�

" #
dV

½Ku/d � ¼
Z
V

½Bu�T½diagðf _SgÞ�½cð1Þ1d �½B/� þ 2½Bu�T½diagðfS _SgÞ�½cð1Þ2d �½B/�
þ2½Bu�T½diagðfð _SgÞ�½cð2Þ2d �½diagðfEgÞ�½B/�

" #
dV

½K/ud � ¼
Z
V

½B/�T½diagðf _EgÞ�½cð2Þ1d �
T½Bu� þ ½B/�T½diagðf _EgÞ�½cð2Þ2d �

T½diagðfSgÞ�½Bu�

þ½B/�T½diagðf _E
2gÞ�½cð3Þ2d �

T½Bu�

" #
dV
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½K//d � ¼
Z
V

2
3
½B/�T½diagðf _EgÞ�½t1d �½B/� þ 3

4
½B/�T½diagðf _E

2gÞ�½t2d1�½B/�
þ 1

2
½B/�T½diagðf _EgÞ�½t2d2�½diagðfEgÞ�½B/�

þ 1
2
½B/�T½diagðf _EgÞ�½t2d2�T½diagðfEgÞ�½B/�

2
664

3
775dV
The expressions for the matrices [M], [Kuu], [Ku/], [K/u] and [K//] are same as those given in Appendix A.3.
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